Category Archives: coronae and iridescence

Iridescence near the ground

Iridescence is caused by light diffraction of water droplets of clouds. The wave nature of light forms new waves at the small drops. In certain directions they interfere and can amplify each other. It is important that the droplets are very small, not considerably larger than the wavelength of light (micrometre range). Such drops occur mainly in medium-high and high clouds. The edges of lenticular clouds iridesce most frequently.

But in very rare cases iridescence emerges below the sun in near-surface layers of fog. Two cases have been seen in the last time.

On 05th December 2015 Claudia Hinz observed cold fog from the Bohemian valley of river Eger accumulating at the crest of the Ore Mountains (German: Erzgebirge; Czech: Krušné hory). As in the afternoon the sun was above the cloud wall, the clouds edge iridescend first and later the complete wall of clouds appeared in slight pastel colours. Iridescence on the frequent Bohemian fog couldn’t be observed previously.

Iridescent Fog

On 09th March 2016 Richard Löwenherz observed slight iridescent shallow fog. It was a windless and sunny late afternoon in the Swedish Jämtland. An anticyclone had establish and caused a gradually clearing sky. In a deep depression originated shallow fog already before sunset, as well as above the frozen Hällsjön at Kaxås in the north of Storsjön. But this scene was unusual. As the ceiling of the flat layer of fog was slight iridescent between 17:10 to 17:15 CET (directly below the sun) it was a real surprise. At this time the air temperature was a little bit below the freezing point. Perhaps in the valleys, where the fog was formed, the temperature decreased below -5°C.

It is worth mentioning, that there was striking iridescence in stratus and stratocumulus fractus since the morning.

2016-03-09_1710MEZ_Flacher-Bodennebel_Hällsjön-bei-Kaxas_Jämtland-Schweden_Löwenherz-horz

 

Authors: Claudia Hinz, Richard Löwenherz

“Rainbow”-contrail

Iridescence contrail

Iridescence contrail. Photo: Ron Smith

Contrails are a result of water vapour, produced as a product of combustion, being ejected from the aircraft engines (→ article)

When a contrail forms near the sun, it’s possible to see a rather beautiful ‘rainbow effect’, as in this example. Such iridescent clouds are a diffraction phenomenon caused by small water droplets or small ice crystals individually scattering light. The aerodynamic contrail formed by the reduction of pressure in the air as it moves over the wing. When the pressure of a gas falls, then its temperature also falls (the same principle as is used by your refrigerator). The reduced temperature causes small drops of water to condense, which then may freeze. The (frozen) drops get larger as more water condenses on them. The iridescent colours are sunlight diffracted by millions of water droplets condensed by the airflow over the wings. The droplets all have similar life histories and therefore similar sizes, ideal conditions for iridescence.

The photograph was taken by Ron Smith at around 1300 local on 18 July 2015 at Henstridge, Somerset, UK. The aircraft was flying from East to West and, when first seen, was only producing an intermittent contrail. The iridescent contrail appeared as the aircraft approached a cloud layer just below its flight altitude.

One of nature’s works of art!

Authors: Ron Smith, Somerset, UK and Claudia Hinz, Germany

Iridescent pileus cloud

Iridescent pileus cloud · Photo: Gabriele Schröder

Sometimes it occurs that small cloud cap forms above a cumulus or cumulonimbus cloud. These caps, wich are similate to a veil,  are called pileus (cap) and indicate that the air above the cumulus cloud is very humid. The humidity is near the saturation point, so that a cloud can form. If this cloud cap is near the sun and the glare of the sun is in an ideal case reduced by the cumulus cloud covering the sun, iridescent colours appear in the cloud cap.

The intense colour of a pileus cloud indicates that the water droplets in the cloud are very small and of a uniform size.

Such an iridescent  pileus cloud could be observed by Gabriele Schröder on June 6, 2015, at 6.50 P.m. in Schneeberg in the Erz Mountains. The phenomenon appeared in three different parts of the cloud within 10 minutes. Especially interesting is above all the shadow in this picture, which was cast by the lower cumulus cloud and projected upon the clouds. Faint rays can also be seen behind the cloud, indicating that also the surrounding air is very humid.

Distrail passing through iridescent cloud

Distrail passing through iridescent cloud · Photo: Claudia Hinz

At 6.35 A.M. on June 25, 2015, I noticed a plane passing through a clear part of the sky without leaving any trace (contrail) behind. Then I observed a beautifully irisating foehn cloud, when suddenly a distrail moved into the cloud dissipating it within two minutes.

Distrail is a short word for dissipation trail. It describes streaky cloud holes caused by airplanes. When a plane flies through or directly above a thin cloud layer, the wake vortices mix the dry air around the cloud into it and the cloud droplets evaporate. This effect is even strengthened by the hot exhausts of the plane, and a clear trail forms behind the plane. Often dust particles in the exhausts act as condensation nuclei making the cloud droplets freeze and form ice crystals. As the saturation vapour pressure above ice is lower than it is above water, the adjacent droplets evaporate. The result is then a white streak of ice clouds between two clear streaks.

Amateur pilots report that the dissipation of clouds also works at small airplanes without jet engines. In this case the propellers stir the air making the cloud dissipate.

Author: Claudia Hinz, Fichtelberg (1215m), Erz mountains, Saxony

“Shadow-Corona” observed on top of Fichtelberg and Zugspitze

It is not unusual that one can see some shadow rays in the sky due to clouds in front of the sun. One can also observe coronas in consequence of diffraction of the sunlight or moonlight by small waterdrops of thin clouds. But it’s a rareness to notice both phenomena at the same time.

It would be even more interesting to be at the top of a mountain with the clouds very close. So, thin wisp of clouds racking only a few meters over your head. Sometimes these wisps cause also beautiful coronas. If a building or a mast obliterate the sun, its superstructures can cast long shadows into the clouds.

Kevin Förster observed both phenomena on top of the Fichtelberg Mountain (Erzgebirge) on January 24th, 2015. This time the sun was behind the tower of the weather station and the different appliances at the top of it afforded the shadows. The origin of the clouds was found in the “Böhmische Becken” situated at the southern slopes of the mountain range. Therefrom they drifted into the direction of the Fichtelberg Mountain. First it consisted of ice crystals and caused ice halos. Over the Fichtelberg there were widespread clouds of waterdrops, which caused a nice corona additional to the shadow rays.

Shadow-corona

“Shadow-corona” at the top of the Fichtelberg. (c) Kevin Förster.

A similar event was observed on Mount Zugspitze in the Bavarian Alps by Claudia Hinz on May 5th, 2013. The sunlight was blocked by a mast and its shadow fell on very thin clouds. Simultaneously there was a bright corona. (12345)

In both cases the sun was lower than the top of the tower so that the shadow of the tower was projected on the cloud layer above. This is a very uncommon phenomenon.

Cloud Iridescence along the Alps and in Hungary

On January 10, 2015, unusually bright and colourful iridescent clouds were observed along the Alps between Switzerland and Hungary. To display the huge area in which the observations were made, Kevin Förster plotted all known observations into the satellite image taken at 12 noon that day.

The cloud iridescence was observed in 7 countries (Switzerland, Liechtenstein, Austria, Germany, Italy (Southern Tyrol), Slowakia and Hungary). The westernmost observation point is Fribourg in Switzerland, the easternmost one is Tápiószolos in Hungary. This means that the iridescent clouds were observed along a distance of 965 kilometres and in an area measuring about 122,500 square kilometres, which ist about a third of the area of Germany. There is no case of a similarly distinctive iridence known so far.

Many observers reported iridescence stretching up to large angles from the sun and a great similarity to nacreous clouds. These form above northern latitudes at very low stratospheric temperatures beneath -80°C in the ozone layer. The iridescent clouds were visible until 20 minutes after sunset, followed after an intense afterglow on clouds which still received sunlight up to 45 minutes after sunset. At some places eye-catching crepuscular rays were also observed. The 30 hPa-Chart, however, shows that it was much too warm for polar stratospheric clouds to form.

Nevertheless the cloud layer must have formed at higher altitudes than normal. One observer reportet that all airplanes flew beneath the clouds, and also many pictures show contrails below the cloud layer. So the clouds probably formed at more than 12,000 metres above ground.

Discussions about the weather situation in our forum and measurements by the Austrian weather service (Central Institution for Meteorology and Geodynamics ZAMG) showed several peculiarities of the situation: Strong foehn winds caused gravity waves which peaking at about 14,000 metres above ground. This was the level of the tropopause, which was unusually high for these latitudes that day. And it also was unusually cold, as a radiosonde launched in Vienna measured a temperature of -75.7°C. The highest of the multilayered foehn clouds formed along the tropopause. Due to their high altitude, their droplets were of the optimal size to cause iridescence. Unfortunately, it can not be clarified if there also formed small ice crystals like in nacreous clouds because strong vertical movements may impede the freezing of the droplets.

Video from Thomas Klein, Miesbach, Southern Germany

Thanks to all who put their pictures at our disposal and helped us with data, special knowledge and hints to clarify the reason for this phenomenon. The discussion can be found, together with a lot of photographs and some time lapse videos in the forum of the Arbeitskreis Meteore e.V.

Authors: Claudia Hinz and Kevin Förster

Corona around reflection of Sun

In the evening of June 6, 2014, a reflection of the sun appeared in an inclined window pane of the pyramid-shaped restaurant building on the top of Mt. Zugspitze, while shreds of cumulus clouds coming from the valley passed by. In these shreds not only the shadow of the top of the building was visible from time to time, but there also appeared a distinct corona around the reflection of the sun.

Author: Claudia Hinz

Wake vortices caused by planes

When air humidity is high, sometimes wake vortices can be observed on the wings of a plane. These are an accessory phenomenon of the ascending force, which needs a certain underpressure to be effective. This underpressure makes the air flow from beneath the wing to its surface for pressurization. As in these vortices there is an area of especially low pressure, the air cools down adiabatically here, often reaching temperatures below the dew point. This makes the water vapour in the air condensate to steam or fog, making the wakes visible.

In the morning of October 8, 2012, Renate Possiel could take a photograph of this phenomenon from the control tower of Munich airport. That day there were wafts of mist with different ranges of sight on the runways. More photographs: 123

Another reason for wake vortices to form is the downward acceleration of the air along the wings when the plane is ascending. At low temperatures and high humidity, also here visible condensation can occur. When a plane passes near the sun, sometimes an iridescence of the wakes can be observed, as showed in this photograph taken by Gabor Metzger.

More often iridescence can be observed on contrails, especially when they are very “young”.  Also these photographs (123) taken by Gabor Metzger.

Another articles to this topic:

Algae corona

This photograph was taken by Hans-Jürgen Heyen from Meerbusch. “I discovered the glory effect in August 2012 at the pond of Hugenpoet Castle in Essen-Kettwig. It made me take a closer look at the water because one tends to think that there are mineral oil products on the surface. But there were gigantic carps in the pond and also some big golden fish which looked like koi-carps. And also a beautiful demoiselle flew over the water. And especially this species of dragonflies is very sensitive against environmental pollution. However, what really was there in the water were algae which caused a significant clouding of the water, and this obviously was the reason for the formation of the algae glory.”

These coronae are caused by light diffraction on very small particles. In most cases, they are caused by algae, but there were also such coloured rings observed around pollen which had landed on the water surface. The coronae are caused when a ray of light is split up into partial beams by such a small particle. These partial beams go on into different directions and interfere in the observer´s eye.

Just like pollen coronae, also algae coronae are not always round. When there are unusually shaped algae are involved, also their ring systems on the water surface can be ovally shaped or have bright spots.

Sodalite interference colours

Sodalite – sodium aluminium silicate chloride – is a mineral of volcanic origin (chemical formula: Na8Al6Si6O24Cl2) and it comes from hydrothermal fluids in a volcanic rock’s cavity. The sodalite containing rock itself is not homogenous but consists of many different, small minerals beside the blue sodalite.

The mineral itself is very nice deep royal blue in general, the piece illustrating this article was mined at Mt. Vesuvius and bought in a mineral shop in Italy. The sodalite pieces are full of other crystals, usually well visible whitish veins which mostly consist of calcite.

When looking at the mineral with the help of some magnifying device we can see small parts of it having thin and colourful layers! These coloured parts are concentrated at the edges of the calcite veins or patches and only visible in a magnified form. Here, the translucent calcite was built on the blue sodalite mineral in a later process different from the forming of the blue crystals from the original hydrothermal solution. These places must also contain a very thin layer of air which is responsible for the colours with its interference.

What is unknown: the forming of the air layers. Are they originally there or are they created when the stone is cut from the rocks? I think the later is more possible as the sodalite rocks can more easily break where the white veins run, so the chopping of the rock might create the gaps, resulting interference patterns. The process might be the same as the ice pieces with fissures showing interference colouration too.

The pictures (123) were taken with a cheap digital microscope, the magnificiation which shows the interference colours is 200X. Smaller magnification also shows it but only in tiny coloured spots.

Author: Mónika Landy-Gyebnár, Hungary

More posts to this topic: