Olea europaea pollen corona

During the days of the 12th Light & Color in nature meeting (May 31st-June 3rd, 2016) in Granada, Spain, I noticed almost constantly a diffuse aureole around the sun, appearing against the background of a clear sky:

2016_05_31_1827s_imgp6900_15_1200
May 31st, 18:27 CEST

2016_06_02_1132s_imgp6988_15_1200
June 2nd, 11:32 CEST

2016_06_03_1938s_imgp7163_15_1200
June 3rd, 19:38 CEST

2016_06_03_1938s_imgp7163_usm_15_1200
previous picture unsharp masked

All photos were cropped to a common viewing angle of 15° x 15° and the color saturation was increased.

Because of the dry and often cloudless summer weather we had back then, it seems unlikely that any kind of water drops did cause the phenomenon. On the other hand, the angular radius was way too small for Bishop’s ring, which at first seemed to be a plausible option as we had observed some haze towards Africa shortly before our plane landed in Malaga on May 30th.

No pronounced color pattern was visible to the naked eye, nor through a gray filter, but the saturation increase in the image processing revealed a typical corona structure with alternating colors. Thinking of pollen as possible scattering particles, the large amount of olive trees (olea europaea) in Andalusia immediately comes to mind. Furthermore, we witnessed ourselves that the olive trees were blooming these days when we visited a grove at Monachil in the vicinity of Granada – some of the visitors’ shirts or backpacks got covered with green dust after coming too close to the trees.

imgp6984
The olive grove at Monachil with the Sierra Nevada in the background (June 2nd, 2016)

dsc01762
A blooming olive twig from a tree in this grove (June 2nd, 2016, photographed by Hironobu Iwabuchi)

In order to check this hypothesis I looked up the shape and size of olive pollen: They are almost spherical with a mean polar diameter of 20.1 µm and mean equatorial diameter of 21.5 µm. For most of the observations, the sun elevation was high enough to simply approximate the pollen as spheres of 21.5 µm in size. I calculated the resulting corona from the solar spectrum using simple diffraction theory (which at this particle sizes is justified):

2016_06_03_1938s_imgp7163_10_fotosimu

Both the photograph and the simulation (right hand side) were cropped to a field of view of 10° x 10°. For the simulation, I assumed a relative spread in the pollen size (standard deviation of a Gaussian distribution divided by the mean diameter) of 15%, convoluted the result with the sun’s disk and added a gray background. It matches the photograph quite well, though the contrast of the natural corona remains lower than that of the simulation. Maybe there were other scattering particles with a broader size distribution present, which added another, rather colorless aureole “layer” on top of the pollen corona, thereby diminishing its contrast. Surprisingly, I could not find any previous reports about “olive pollen coronae”, though the phenomenon should be quite prominent during the right season in the olive-growing regions.

Posted on November 28, 2016, in observations, pollen and algae phenomena and tagged , , . Bookmark the permalink. Leave a comment.

Leave a comment