Moonbow with Alexander’s dark band


On July 31, 2015 was a “blue moon” (second full moon in a month). The weather forecast for that night in Spain was storms and heavy rains. I was travelling from Madrid airport to the north of Spain. The first atmospheric phenomenon was a 22 degree halo that I photographed in the rural areas of Castilla. Then the storms began and the blue moon disappeared. At 5am I was already at my home in Villaverde, Leon. It was raining all night but then only for a few minutes the moon appeared again on the wester horizon and produced this double moonbow with Alexander’s dark band.

I created also a short timelapse video of a second  moonbow , late that night, just before dawn. Pictures taken with Nikon D5300, Nikkor fisheye 10,5 mm, f:2,8, ISO 400, 20 sec exposure.

Author: Roberto Porto, Spain

Halo Blog is back


We have reactivated the separate Halo Blog so that it can serve as an international forum for observations of halo phenomena and for discussions about halo theory.

We hope for an interesting exchange!

Lunar odd radius display in diamond dust


On four out of last five winters Tapio Koski has photographed lunar diamond dust odd radius halos in the Rovaniemi area. These one-per-winter occurrences are almost solely responsible for lunar diamond dust odd radius displays photographed in Finland during those years. This winter we wanted take part in the tradition. Yet despite numerous odd radius displays we had harvested in the beam, those by the moon – or sun for that matter – were simply not on the offing.

Except on the night of 20/21 January, which was the month’s last diamond dust night in Rovaniemi. During the day, when driving in the city, we paid attention to Fairbanksian amber, a beautiful yellow glow in the sun direction which can be seen in cold weather and with which we became familiar on the succesful halo expedition to Fairbanks in January 1996. This gave us an omen of foreboding that a night of big odd radii diamond dust was finally on the cards for Rovaniemi. Weather forecast was with us too, as the temperature was expected to drop to -33° C – the magic number that Walt Tape has given as being in the center of the temperature range favorable for odd radii.

The display appeared as some thin water cloud that had momentarily overtaken the sky cleared away. The first halo visible was upper 23° plate arc, many others soon followed the suit. In the beam only a crappy plate dominated display was visible – the pyramid stuff was higher up.

Authors: Jarmo Moilanen, Marko Riikonen, Finland

Oblique supernumeraries to the primary rainbow

August 1, 2015: Rainbow with oblique supernumeries. Photo: Claudia Hinz

August 1, 2015: Rainbow with oblique supernumeries. Photo: Claudia Hinz

Last fall, two AKM members observed a rainbow with supernumeraries, which were clearly oblique to the primary rainbow.

On August 1, 2015, they were observed by Claudia Hinz on a red rainbow just before sunset in the Fichtelgebirge / Erzgebirge mountains. A rain front had just passed and the last precipitation from the departing clouds evaporated in the air, so that the raindrops did not reach the ground anymore. Virga were clearly visible and at the same time an intensive Zero order glow could be seen at the Sun side.

On October 5, 2015, Sirko Molau observed in Günzburg/Bavaria a similar phenomenon. Also here the rain shower had already passed and a strip of blue skies was visible near the horizon. Over one hour after the rain Sirko was surprised to see a bright rudiment of the rainbow. On the first glimpse it looked like a split rainbow. However, a closer look revealed that two interference bows disemminated obliquely from the root of the rainbow.


October 5, 2015: Rainbow foot with oblique supernumeries. Photo: Sirko Molau

The oblique interference arcs can be explained best with different raindrop sizes. In both cases, the rainbow appeared after the rain had disapperead and just when the Sun showed up. We can assume that dry air had already moved in, causing the last drops to evaporate on their way to the ground. So the raindrops quickly reduced in size after they left the cloud. The simulation of Les Cowley shows that with reduced drop size not only the number, but also the distance of the interference bows decreases.

Authors: Claudia Hinz, Sirko Molau, Germany

Reflected Sunlight Dewbow


Reflected Sunlight Dewbow. Photos: Jérémie Gaillard

On August 19, 2010, Jérémie Gaillard made an interesting discovery when looking at the surface of the lake Etang de l´Alleu which is located in the French community of Saint-Arnoult-en-Yvelines. The water was covered with pollen, on which droplets of dew had formed. In these droplets two colourful rainbows were visible. Dewbows can be understood as the lower part of a rainbow projected onto a horizontal plane. When a dewbow is fully developed, a semi-circle which opens towards the sides should be visible, the apex of which is situated at the lower end of the observer´s shadow. Equivalent to normal rainbows, primary and secondary dewbow should run parallely, but in Jérémie Gaillard´s observation they did not.

Instead, the second colourful bow fragment is a reflected sunlight dewbow. The surface of the water acts as a large mirror reflecting the sun. The reflected image of the sun now acts as a second source of light, which is situated as far below the horizon as the sun is above it. (angle of incidence = emergent angle). So the antisolar point for the reflection of the sun is above the horizon. This reflected antisolar point, which is located the double of the real sun´s elevation above the antisolar point, is the centre of the two rainbow circles for the reflected sunlight. So the additional rainbows are displaced upwards by the double sun elevation compared to the primary and secondary rainbow, making a rather unfamiliar appearance in the open nature.

Author: Claudia Hinz

Two Days of Diamond Dust Halos in Boži Dar (CZ) Nov. 27th/28th, 2015

The attempt of a group of pictures. Photo: Andreas Zeiske

About half of the participants under a diamond dust halo. Photo: Andreas Zeiske

The 13th meeting of German halo observers was a quite bountiful one as it presented halos on two of the three days. The location at the top of the western Ore Mountains, which straddle the German-Czech border with peaks surpassing 1200 m is well known for complex displays as documented by the organizers Claudia and Wolfgang Hinz. [e.g. 1234]

Although this area was being readied for the skiing season, ice crystals from snow guns were not the dominant source for the observed halo phenomena. Rather, the local winter weather can make fog from the often persistent huge mass of cold air in the Czech/Bohemian basin ascending toward the mountain ridge, where it can precipitate as diamond dust. Claudia Hinz has also observed that it does not need to be below -10oC for good halo displays.


The Mt. Keilberg in a diamond dust cloud. Taken from Mt. Fichtelberg by Andre März.

As a case in point, during the meeting, the temperatures were between -2oC und -5oC only. However, clouds and fog were not coming from the South this time, but rather slowly from the Northwest. The photo taken on the evening of Nov. 27th, 2015, shows a hood composed of this ice fog covering Mt. Klínovec (Mt. Keilberg, 1244 m) as seen from Mt. Fichtelberg (1215 m) a few kilometers to the west. These two mountains are the highest peaks of the range, and both were accessed in less than 10 minute by car from our meeting place in the cosy winter resort Boži Dar (Gottesgab).

On that very night, the ice fog at Klínovec unfolded a wide array of lamp and lunar halos, namely the plainly visible 22°-ring, upper and lower tangent arcs, Parry arc, 46°-ring (or supralateral arc)  parts of the parhelic circle, and just bordering at visual detection Tape arcs, helic arc (from the Moon, however) and Moilanen arcs, as well as Minnaert’s cigar.

But there were daylight halos too, and it all started unexpectedly on the same day’s morning, when murky morning weather all of a sudden made room for ice fog precipitating into clear Southeastern skies. This also happened at the road toward and on the summit of Klínovec. Although being seasoned observers, most participants of the meeting had never stood in diamond dust and its halos. So, this day proved to be a spectacular experience for all senses, of course starting with the three-dimensional flickering of otherwise well-known halos up to the sounds and sights of ice crystals falling on their jackets like fine semolina.

Actually, one of the group, Reinhard Nitze, often refrained of looking at the halos, but rather collected and photographed the fallen crystals. These proved to be almost exclusively needles. This is compatible with the observed halos, comprising once again strong tangent arcs, a weaker 22o ring, and later then an occasional display of the suncave Parry arc and parts of the 46°-ring (or supralateral arc) and traces of the helic arc, outlined by individual glistening crystals in the zenith only .

The next display came to happen after a late lunch on Fichtelberg. In it, halos of the 22o family were nicely contrasted against a blue sky, with the upper tangent arc assuming a huge “longhorn steer like” appearance at times. Due to rapid variations in the thin drifting ice fog, many halos “pulsated” in 3D between a couple of meters distance and maybe 50 to 100 m. Not farther away than a few arm lengths, one could see both a weak 22o ring as well as a snow surface halo from the just fallen crystals. The whole display was ending with a blindingly bright pillar of light around the sun.

The second day (Nov. 28th, 2015) eventually saw a westerly snow and rain front drawing in, but in the early morning  there were halos, once again on Fichtelberg (22° ring, UTA, and 46o ring und mehr?).

For the subsequent interesting talks and demonstrations by Elmar Schmidt, Alexander Haußmann, Claudia Hinz, Michael Theusner, Georg Dittié, Kevin Förster, Reinhard Nitze, Michael Großmann, Thomas Klein, and Richard Löwenherz, which formed the other major part and reason of the meeting, the reader should refer to the German language publications [1].

Before leaving for their respective homes, on Sunday, Nov. 29th, 2015 the group was given a tour of the Fichtelberg active mountain top weather station which by now was surrounded by a thick ground cover of snow.


Author: Dr. Elmar Schmidt, Bad Schönborn, Germany

Munich Süddeutscher Verlag Tower Sunrays in Fog and “Ghost Windows”


A lot of discussions went on before the SV-Tower was built. The headquarters of the publisher “Süddeutscher Verlag” was originally designed to be a 145 metres high 39-story building, but had to be limited to 100 metres (28 stories) after a popular petition in Munich.

It was built between 2006 and 2008, when in September the SV employees rather unwillingly moved to their unloved new workplace.

There were several discussions on the visual appearance of the new high-rise building. Some considered it as a boring square log, while others admired the special feature of its storefront.

This storefront consists of a straight inward and a prismatic outward glazing. As the individual panes of the outer storefront are inclined to each other, they reflect landscape and sky alternately. So, depending from the incidence of light and the observer´s position, the appearance of the tower changes permanently. The inner glazing is normally not important here.

Already in 2010, a friend showed me an unsharp photograph taken from his mobile phone, which showed sunrays in dispersing fog around the SV Tower. Although I pass the building almost every morning, it took five years until I could experience this phantastic light show myself.

Hoping to be lucky this time, I took my camera with me on my way to work on November 3, 2015. The tour didn´t start very promising, as there was no fog around Munich. But when I reached the fairground east of the city, some fogbanks appeared, which already had started to disperse. Above them, the sun was shining, and so I got more and more excited. Should I really be lucky today?

Short before the end of the A94 motorway, the SV Tower  provided a stunning show with its reflected sunrays in the fog. Just a few hundred metres further I took an exit and went back on a road parallel to the motorway. From a parking lot I could watch and photograph the permanently changing sunrays.

Intensity, direction and appearance of the rays constantly changed when I changed my position and the wafts of mist moved. And even the inner glazing played a role now, because the light caroming the straight inner glazing becomes reflected parallely. This caused an effect of “ghost windows” in the fog.

When I started my observation at about 9.50 a.m., the fog was still relatively thick. At about 10.25 a.m., the fog had completely dispersed and the show was over.

Author: Rainer Timm, Munich, Germany

Green flash over the North Atlantic Ocean


I am currently working as an astronomy lecturer for a German tour group sailing the Norwegian cost on the Hurtigruten vessel MS Nordnorge. On October 8, around sunset we crossed the Vestfjord a stretch of open sea between the Norwegian mainland and the Lofoten islands. Since I expected to see a green flash, I prepared everything to capture the phenomenon.

I was not disappointed. Through my 600 mm telephoto lens I could clearly see the green an blue flash. Closer inspection of the images afterwards also revealed that I also manage to capture a purple flash in the last fractions of a second before the upper limb of the Sun entirely disappeared.

I am attaching a panel which collects crops from the last 30 images in my picture series which show the development of the phenomen over the last 12.66 seconds (according the time stamps created using GPS time). I have also created a very nice gif animation of the event, which you can find (along with additional pictures) on my homepage.

Author: Benjamin Knispel, Hannover, Germany

Niagara Falls Rainbow


After being up at Niagara Falls back in 14 I had to come back for more and wanted to be there when the lights on the Canadian side light up the falls. The night we arrived the light were turned up and got to see some amazing rainbows. The lights would change color and it was a sight to see a rainbow being different colors along its length. In addition to the floodlight bows I also got nice rainbows from natural sunlight and using the super wide angle field of view with my GoPro camera I got nice full circle rainbows. For anyone who is a waterfall or rainbow chaser. Niagara Falls is the place to go and falls are BEST on the Canadian side and this is the perfect bucket list item.

Author: Michael Ellestad, Ohio, USA


Iridescence contrail

Iridescence contrail. Photo: Ron Smith

Contrails are a result of water vapour, produced as a product of combustion, being ejected from the aircraft engines (→ article)

When a contrail forms near the sun, it’s possible to see a rather beautiful ‘rainbow effect’, as in this example. Such iridescent clouds are a diffraction phenomenon caused by small water droplets or small ice crystals individually scattering light. The aerodynamic contrail formed by the reduction of pressure in the air as it moves over the wing. When the pressure of a gas falls, then its temperature also falls (the same principle as is used by your refrigerator). The reduced temperature causes small drops of water to condense, which then may freeze. The (frozen) drops get larger as more water condenses on them. The iridescent colours are sunlight diffracted by millions of water droplets condensed by the airflow over the wings. The droplets all have similar life histories and therefore similar sizes, ideal conditions for iridescence.

The photograph was taken by Ron Smith at around 1300 local on 18 July 2015 at Henstridge, Somerset, UK. The aircraft was flying from East to West and, when first seen, was only producing an intermittent contrail. The iridescent contrail appeared as the aircraft approached a cloud layer just below its flight altitude.

One of nature’s works of art!

Authors: Ron Smith, Somerset, UK and Claudia Hinz, Germany