Author Archives: alexanderhaussmann

Crepuscular rays extended to (almost) 180° observed from Mt. Großer Zschirnstein, Elbe sandstone mountains, June 8th, 2014

2014_06_08_2126S_IMGP3399_3402_3405_ Panorama_crop_fil

Each year during the Pentecost holidays I undertake together with some friends a cycling tour to the Elbe sandstone mountains. This is usually a good opportunity to look for atmospheric phenomena, since we are out in the open the whole day. However this year we just had the sun shining from a plain blue sky most of the time. I feared that nothing interesting would happen, but I was wrong: In the evening of June 8th, thunderstorms were active about 200 km or more to the northwest from our location (Großer Zschirnstein, 50° 51′ 23″ N, 14° 10′ 34″ E, 561m). The top parts of these clouds acted as apertures to cast crepuscular rays through the sky shortly after our local sunset. To the south the view from this mountain is fully unobstructed since the lookout point is located right above a 70 m high rock cliff. Our struggle to thrust the bicycles up there was rewarded by the beautiful sight of a bright, rosy coloured beam extending from the twilight sky in the northwest to the rising earth shadow in the southeast and passing just below the waxing moon.

Even with a (full frame) fisheye lens it was hard to capture due to its extension of about 180°, so I decided to do panorama stitching from an image series (21:26 CEST: local solar elevation -1,5°). One should keep in mind that in reality crepuscular rays are straight lines and the curved shape in the photo is just a result of the cylindrical projection. Likewise it would have been possible to distort the horizon and make the crepuscular ray straight. Having a look at a panning video may be the best way to understand the geometry. Some minutes later (21:31 CEST: local solar elevation -2,3°) a second beam had appeared quite prominently above the first one, and even more might be detectable by image processing. Though all of them being parallel straight lines in 3D space, the mind is always tempted to interpret them as fanning beams like the emissions from a lighthouse.

Until 21.40 the rays disappeared almost completely apart from the foremost part in the northwest, which itself became quite bright at that time. Around 21.48 the cumulonimbus clouds themselves became visible for a while. This change in illumination and visibility must be caused by the increasing solar depression below the horizon which leads to more vertically inclined sunbeams, until the sun finally sets at around 52° N / 12° E (where the clouds might have been) in 10 km of altitude as well.

Neklid Antisolar arcs: Case closed?

In my last post I outlined several possibilities to explain the great brightness of the antisolar arc (AA) compared to the heliac arc (HA) in the Neklid display from Jan 30th, 2014. All of them were a bit off the main road of traditional halo science, but traditional arguments did not help to clarify what was observed, hence I had to look for something else.

Both the concepts of plate Parry crystals and trigonal Parry columns should yield weak traces of unrealistic (or better to say non-traditional) halos that might appear in a deeper photo analysis. Claudia Hinz provided me with a set of pictures from the display to unleash any kind of filters that would seem appropriate. Indeed it was possible to pin down traces of the Kern arc in some of the pictures after the initial application of an unsharp mask (1, 2), followed by high-pass filtering (1, 2) or, alternatively, by Blue-Red subtraction (1, 2). Note that the Kern arc was weakly present in the simulations for hexagonal, Parry-oriented plates. This, of course, must not be confused with the recently proven Kern arc explanation relying on trigonal plates in plate orientation. Finally, trigonal columns in Parry orientation are a third non-traditional crystal configuration giving rise to new halos. However, these do not yield a Kern arc.

Obviously, the Kern arc fragments in the photos are very feeble and the whole procedure reminds a bit of the search for higher order rainbows. It is mere guesswork to detect how far the arc stretches around the zenith, but doubtlessly it extends up to 90° and more in azimuth, thus being clearly distinguishable form the circumzenith arc. Nonetheless, one would feel safer with further evidence. Comparing the simulations for Parry columns and Parry plates, three more differences are discernible (apart from the changed AA/HA ratio):

1) For Parry plates, the upper suncave Parry arc does not show an uniform brightness, but appears brighter directly above the sun and loses some intensity towards the points where it joins the upper tangent arc.

2) The upper loop of the Tricker anthelic arc is suppressed for columns, but shows up for plates.

3) Some extensions of the upper Tape arcs appear between the Wegener arc and the subhelic arc.

At least the first two points can be answered in favor of the Parry plates, being visible even without strong filtering. However, I failed to detect any extended Tape arcs as “ultimate proof” so far. This might not surprise since they are, according to the simulation, comparable to the Kern arc in intensity and appear in regions of the sky where the crystal homogeneity was not as well developed as in the vicinity of the zenith.

Piecing the parts together, it seems evident that at Neklid the AA intensity was due to Parry-oriented hexagonal plates. Their traces were detectable, whereas nothing appeared that would hint on trigonal Parry columns. In contrast to this, Parry trigonals were responsible in Rovaniemi 2008. This implies that in nature at least two different mechanisms occur for AA brightening.

Finally the question remains how plates may get into a Parry falling mode. But as long as no one understands how symmetric columns do this (though we have the empirical evidence), we should be prepared for surprises. There might also be a connection to recently discussed details of the Lowitz orientation (2013 Light and Color in Nature conference, talk 5.1).

The mystery of bright antisolar arcs




(photo by Claudia Hinz)

The antisolar (or subanthelic) arc (AA) was one out of the vast range of halo species occurring during the marvelous Neklid display observed by Claudia and Wolfgang Hinz on Jan 30th, 2014. This kind of halo seems to be exceedingly rare, since it has only been documented during the very best displays, mostly observed in Antarctica. On the other hand, the heliac arc (HA) is a, however not frequent, but well-known guest in Central Europe. Both of them are reflection halos generated by Parry oriented crystals and touch each other at the vertices of their large loops. Fisheye photos towards the zenith from Neklid shows both these halos in perfect symmetry and approximately similar intensity, at least regarding the upper part of the AA.

When trying to simulate the display (solar elevation 17.5°) using HaloPoint2.0, I noticed that the AA was rendered much weaker than the HA, which of course does not match the photographic data. To obtain the Parry effects (Parry arcs, Tape arcs, HA, AA, Hastings arc, partially circumzenith arc, Tricker arc, subhelic arc) I chose a population of “normal” (i.e. symmetrically hexagonal) column crystals with a length/width ratio of c/a = 2 in the appropriate orientation. Since both HA and AA are generated by this very same crystal population, their mutual intensity ratio cannot be influenced by adding plates, singly ordered columns, or randomly oriented crystals. This mysterious issue has also been noted by a Japanese programmer who came across the Neklid pictures.

Inclusions of air or solid particles within the ice crystals are an obvious hypothesis to explain this dissenting AA/HA intensity ratio, since they cannot be accounted for in the standard simulation software. However, a look into literature reveals that there are external and internal ray paths for the HA, but only internal paths for the AA ([1] p. 34-35). That means that inclusions will diminish the AA to a greater extent than the HA. In the extreme case with the interior totally blocked, no AA can arise but a HA is still possible due to external reflection at a sloping crystal face. Hence inclusions cannot explain the bright AA from the Neklid display. Air cavities at the ends of columns which are seen quite often in crystal samples will also inhibit the AA because an internal reflection at a well defined end face is needed for its formation.

Spatial inhomogeneities in the crystal distribution might serve as explanation as long as there is only one single photo or display to deal with, especially when the air flow conditions are as special as they were at Neklid. Maybe there were just “more“ good crystals in the direction of the AA compared to where the HA is formed, either by chance or systematically due to the wind regime. But surprisingly also the observations from the South Pole (Jan 21st, 1986 (Walter Tape); Jan 11th, 1999 (Marko Riikonen), also discussed here) show an AA/HA ratio somewhere in the region of unity as far as one can guess from the printed reproductions ([1] p. 30, [2] p. 58). Parts of the AA appeared even brighter than the HA in Finnish spotlight displays. All this implies a deeper reason for the AA brightening. It seems rather unlikely that in all these cases the inhomogeneities should have worked only in favor of the AA.

Hence the crystals themselves must be responsible for AA brightening. Non-standard crystal shapes and orientations are conjectures that can be tested easily with the available simulation programs. For a first try, one can assign a Parry orientation to plates instead of columns. Changing the c/a shape ratio from 2 to 0.5 while keeping all other parameters fixed results in a much brighter AA.

It is, however, commonly accepted that due to the air drag only columns can acquire a Parry orientation ([1] p. 42). Furthermore, some halos appear in the plate-Parry simulation which have not been observed in reality, e.g. a weak Kern arc complementing the circumzenith arc. At this stage the question may arise why only due to aerodynamics any symmetric hexagonal crystal (may it even be a column) should be able to place a pair of its side faces horizontally to generate Parry halos such as the HA and AA. Cross-like clusters or tabular crystals ([1] p. 42), from whose shapes one will immediately infer that rotations around the long axis are suppressed, seem much more plausible. Surprisingly, Walter Tape’s analysis of collected crystal samples shows that Parry halos are mainly caused by ordinary, symmetric columns. Parry orientations might be a natural mode of falling for small ice crystals, though up to now the aerodynamic reasons remain unclear. Nonetheless I tested if tabular crystals would give a bright AA. This was neither the case for moderate (height/width = 0.5) nor strong aspect ratio (height/width = 0.3). The AA was in both cases even weaker than in the symmetric standard simulation with which the discussion started.

Trigonal plates have been brought into discussion as possible crystal shapes being responsible for the Kern arc (see also [1] p. 102). Out of curiosity I tested how Parry oriented trigonal columns would affect the AA/HA intensity ratio. In contrast to symmetric hexagonal columns two different cases exist here, depending on whether the top or bottom face is oriented horizontally. As seen from the results, a sufficiently bright AA can be simulated using trigonal Parry columns with horizontal bottom faces, but the upper suncave Parry arc and the lower lateral Tape arcs at the horizon disappear. Obviously they have to, since a trigonal crystal in this orientation does not provide the necessary faces for their formation. On the other hand, the simulation predicts unrealistic arcs like the loop within the circumzenith arc. Choosing a trigonal Parry population with top faces horizontal will diminish the loop of the HA and wipe out the upper part of the AA as well as the upper lateral Tape arcs and add an unrealistic halo that sweeps away from the supralateral arc.

Is it possible to generate a realistic simulation of the Neklid picture with such crystals? Clearly this will require to add a second Parry population of symmetric hexagonal prisms. Doing so, a reasonable compromise can be achieved. In this case the hexagonal crystals produce the Parry arc, whereas the trigonal ones are responsible for the AA. Due to the triangular portion being small, the unrealistic halos become insignificant. However, the fact that a further degree of freedom (mixing ratio trigonal/hexagonal) has to be added to the set of initial simulation parameters is somehow dissatisfying.

The question lies at hand if this result might also be obtained by choosing a single Parry population of intermediate shapes between the symmetric hexagonal and trigonal extremes. This idea is further motivated through pictures of sampled crystals that, though being labeled „trigonal“, show in fact non-symmetric hexagonal shapes. The simulation for these shapes does indeed predict an enhanced AA compared to symmetric hexagons, but the lower lateral Tape arcs and the upper suncave Parry arc still appear too weak. This means that an additional set of symmetric hexagonal crystals is needed again to render these halos at the proper intensity.

Moreover, quite prominent unrealistic halos like the loop crossing the circumzenith arc appear in the simulation. If this assumption for the Parry crystal shape was right, this arc should be visible in an unsharp mask processing of the photos. Its absence hints that these crystals did not play a dominant role in the Neklid display. One could argue that the unrealistic halos may depend strongly on the actual crystal shape and might be washed out in a natural mixture of different “trigonalities“. However, the simulation tests indicate that even in this case the unrealistic halos remain rather strong, as long as one still wishes to maintain an AA at sufficient intensity.

As a conclusion, it can be stated that the intensity ratio between the heliac arc and the antisolar arc in the Neklid display as well as in Antarctic and Finnish observations has raised basic questions about the shapes of the responsible crystals. Simulations with symmetric hexagonal Parry columns, i.e. the standard shapes, render the AA to weak compared to the HA. Inclusions in the crystals and spatial inhomogeneities of the crystal distribution can be ruled out as the cause of this deviation. Plates in Parry orientation or a mixture of Parry oriented trigonal columns with horizontal bottom faces and hexagonal columns both result in a more realistic AA/HA intensity ratio. However, they introduce traces of unrealistic halos and are rather uncommon hypotheses: Plate crystals are not supposed to fall like this, and the existence of “true” trigonal crystals is doubtful. Moreover, the trigonal crystals need an accompanying set of standard Parry crystals to generate other halos like the upper suncave Parry arc.

So all in all the mystery of bright antisolar arcs cannot be regarded as solved at this stage. Since this halo species is very rare in free nature, it might be helpful to test perspex crystal models of different shapes in Michael Großmann’s “Halomator“ laboratory setup. Though the refractive index in perspex is higher than in ice, the basic relations between HA and AA stay the same. However the big challenge remains to collect and document crystals during such a display, e.g. with the methods described by Reinhard Nitze.


[1]     W. Tape, Atmospheric Halos (American Geophysical Union, 1994)

[2]     W. Tape, J. Moilanen, Atmospheric Halos and the Search for Angle x (American Geophysical Union, 2006)


I missed an important piece of information from Finland 2008: The idea of trigonal crystals making Parry halos was already pointed out by Marko Riikonen in an analysis of the Rovaniemi searchlight display. In that case, even one of the halos that I termed “unrealistic“ was observed in reality, thus strongly supporting the trigonal interpretation.

Spring halos in Eastern Germany: 46°/supralateral splittings, tangent/Parry arc twins, a great pyramidal show, and biting cold


During the past months the sun was only rarely seen in Eastern Germany, and the number of observed halos was correspondingly low. Moreover, when everybody was hoping for the onset of spring, the winter regained its strength after March 10th, and people were confronted with masses of snow and untypically cold days and nights for this time of year. But embedded in this belated winter period was a row of days (March 23rd-28th) with a remarkable outbreak of halo activity. This report will concentrate mainly on my own observations, though there is also more and complementary material available at the Meteoros message board (in German language).

Saturday, March 23rd

In Hörlitz, Lower Lusatia (51° 31’ N, 13° 57’ E), the 22° ring and upper tangent arc (or upper part of the circumscribed halo, respectively) were visible from noon on, later to be joined with a suncave Parry arc for some minutes around 15:00 CET (15:01, unsharp masked) as well as a parhelion with a notable blue hue (15:08). From 16.00 to 16.45 the circumzenithal arc was also present. In the evening, the 22° ring, circumscribed halo, both paraselenae and the paraselenic circle appeared at the moon (19:34, USM). The further development is nicely illustrated by a time lapse video I took from 19:54 to 21:54. A weak 9° ring was also present, as visible in the filtered version of the frame from 21:04.

Sunday, March 24th

Solar halos were again visible from noon on, but quickly changing as the cirrus clouds moved across the sky. I took a second time lapse video (13:23 to 14:40) from the same position as in the night before, showing the 22° ring and the upper part of the circumscribed halo. Note the increase in the wind velocity compared to the night before. This really “fresh” breeze from the East in combination with temperatures below 0 °C even at high noon was challenging for both the observer an the technical equipment. Though the video may suggest that the halo activity decreased during the afternoon, there were occasionally some colourful surprises embedded in the flow of cirrus patches (16:00).

Monday, March 25th and Tuesday, 26th (after midnight)

I continued my observations in the afternoon of March 25th from the town of Dresden, Saxonia (51° 3’ N, 13° 46’ E). However, as I was later told, I already missed a parhelic circle segment that had been visible around noon. When I had the opportunity to look at the sky, all the halos seemed to reassemble slowly out of nothing (15:58, USM). This pattern of standard halos remained stable throughout the afternoon, and was joined by a photographically detectable supralateral arc at around 17:15. Its left wing became visible to the naked eye at around 17:35. Remarkably, a photo from 17:27 shows both the supralateral arc and the real circular 46° halo in the unsharp masked version, with the former touching the circumzenithal arc and the latter missing it; and both arcs merging at the left side at the spot where I later could see the “supralateral” arc by eye. Very likely this bright region was indeed not a pure supralateral arc, but a mixture with the 46° ring. An alternative way for halo image processing is the subtraction of the blue image channel from the red, which also yielded a convincing result here. Throughout the last months I had the opportunity to record this 46°/supralateral merging (or splitting) effect several times, though it never was clearly visible to the naked eye and could only be revealed by image processing.

At 18:10 (2° solar elevation) all halos had vanished for the naked eye, except for a bright upper tangent arc sitting on a weak 22° ring. Once more, unsharp masking revealed a surprise, namely a weak upper sunvex Parry arc looking like a shifted twin of the tangent arc (USM, R-B). This Parry arc had not been present in photos taken 8 minutes earlier.

Up to this point, the halo activity had already been much higher than what we get in average, but the definite climax was yet to come during the night. A weak 22° ring with a right paraselene (the view to left was obscured) was present around 21:00. At around 21:50 a weak 9° halo could be traced from the photos. At 23:30 the 9° ring was plainly visible, having a brighter spot at its bottom (i.e. the lower 9° plate arc). Due to this encouraging observation, I placed my camera on a cherry pit pillow at the balcony balustrade, and started an automatic time lapse series over almost 4 hours. Occasionally, I entered the balcony from inside to take a glimpse at the sky, but I did not want to disturb the fisheye photo recording by my presence. Hence my visual inspections were not carried out with full adaption to darkness. The 9° ring was very prominent until approx. 03:00, with a bright bottom and from time to time quite bright sides. The 22° halo was rather diffuse, which I took as a sign that further pyramidals might be hidden there. On its top something like a diffuse combination of  an upper tangent arc and a 23° plate or Parry arc was seen. Since the unusual quality and rareness of such an observation was immediately clear to me,  I was very excited what the time lapse video from 23:49 to 03:42 would reveal. The results did even exceed my expectations, especially in the unsharp masked version. In the following pictures (composites of each two neighbouring frames from the time lapse series for the sake of noise reduction) I labelled the halo species I could identify.

00.32.45, lunar elevation 35° 8’:
The distinction between the 23° plate arc and the Parry arc is difficult, but the presence of the other plate arc justifies the interpretation as the former effect. However, there is not enough detail in the bright region at the bottom of 22° ring to decide if more than an ordinary lower tangent arc, e.g. a  20° plate arc, is present. The circular 23° halo is either missing or masked by the outer intensity gradient of the 22° ring. It is however the only smaller halo that requires the prismatic top faces (or bottom faces, as being equivalent for random orientations) of the crystals, and hence it represents a special case. Against this view stands the presence of the 46° halo (at least 1 h later, see below), which requires such crystal faces as well, so the problem remains open.

A version of this photo without the labels is displayed as the title image of this report.

01.29.45, lunar elevation 29° 39’:
At this stage of the display, the bright regions at the sides of the 9° ring appear very prominent, corresponding to the visual impression. They can be associated with column arcs, however, I did not find traces of column arcs of the other halo families in the photos (yet).

01.36.45, lunar elevation 28° 52’:
A very strong unsharp masking reveals the additional presence of the 35° and 46° halos. The clear intersection with the paraselenic circle demonstrates that indeed the circular 46° ring and not an infralateral/supralateral combination is dominant. Note that this situation changes towards the final frames of the video, in which a clear supralateral arc without a 46° ring can be seen.

All radii have been checked by calculating the angular distance of several stars from the moon.

Tuesday, March 26th and Wednesday, March 27th (after midnight)

During the afternoon the halo activity rose again, until at around 14:00 both a complete 22° ring and 9° ring were visible again in rather structured cirrostratus clouds. Over the next hour, the clouds became more uniform, but also more dense (15:12). Unsharp masking and subsequent Red-Blue subtraction revealed also a weak 35° halo and 46° halo, both not being visible to the naked eye (USM, R-B). In the R-B picture, an additional ring-like feature is visible at about 12° distance from the sun, likely an artefact of this processing mode in connection with the camera and lens. It could be traced in later photographs (15:22, USM, R-B, composite of two images), maybe together with faint traces of the pyramidals near the 22° halo. As in the night before, the pyramidals faded over time, until a pattern of prismatic halos remained (16:35, USM).

Moon halos seemed at first unlikely due to the increasingly dense clouds, but after midnight once more the 22°/9° ring combination stood in the sky, however rather diffuse and less colourful than before (00:38, USM, composite of two images). A supralateral arc (or 46° halo) additionally appeared around 02:00 (02:12, USM, composite of two images).

Wednesday, March 27th and Thursday, March 28th (after midnight)

Around noon, a complete parhelic circle together with the 22° ring, circumscribed halo and both parhelia could be seen in the region of Dresden, though I personally missed this observation. When I began to look at the sky in the early afternoon (I was somehow a little afraid that this flood of halos would never end), the parhelic circle had lost most of its brightness, but was still detectable at the sunward side of the sky. No pyramidal halos showed up anymore, so maybe the most exotic halo species at this point was a small Lowitz arc reaching from the right parhelion to the 22° halo. However, the detection is difficult due to the presence of contrails and lower clouds, that produce artefacts in the image processing (13:34, USM). R-B subtraction also revealed a weak 46° halo.

Again, the clouds did thicken towards the evening, but this day before midnight a light snowfall set in. The series of halos seemed to have come to definite end. Nonetheless, during the night the upper part of the 22° halo appeared on the moon, just as to wave goodbye after an astonishing week full of surprises and challenges (02:11) and certainly one of the most remarkable periods in my 18 years of skywatching.

All images and videos from this report can be found here in chronological order. Any details concerning camera and lens type, focal length, precise time stamps etc. will be provided on request.

Author: Alexander Haußmann, Dresden, Germany

Reconstruction of height and position of the green airglow from July 15th, 2012


It was an ironic situation when during the night from 14th to 15th of July 2012 (at a weekend) a high number of observers and photographers were looking for a predicted aurora borealis and instead were confronted with a remarkable outburst of structured (or banded) green airglow. This phenomenon is well known and explored by professional geo-scientists but seemed to have slipped the attention of most amateur observers, including myself, up to then. Though it first seemed likely that the geomagnetic storm may have somehow triggered this event, later observations (e.g. July 23rd, 2012: indicated that the traditional excitation mechanism (UV and X-Ray radiation from the sun) is capable of producing intense green airglow without the need for a geomagnetic anomaly.

Due to the fascination I felt during my own observation, I got interested in using the many available photographs from the July 14th/15th night for a height and position reconstruction. However, as I later found out from literature, the airglow height of  87-95 km (i.e. a quite thin layer, comparable to the NLC layer around 83 km) is already well established by professional measurements. It is remarkable that this value can in fact be reproduced by comparing amateur photographs from various locations in Germany by an un-biased analysis, which I want to present here.

The first task to do was to contact other observes via the well-known communication boards about atmospheric optics to gather suitable photographic material. Of course I had my own images at hand and intended to use them for this process, so I already had a list of time slots to find synchronous counterparts for. Even though I could find several pictures taken within a tolerance of < 1 minute with respect to my own photos, I had to drop most of them since a coarse analysis of the viewing directions yielded no overlapping fields of view. But through discussing my idea with several other photographers, I was able to identify other matching pairs independent from my own material. Finally, I ended up with two data sets (image pairs), 1 and 2,  to work with:

1a) Frank and Sabine Wächter: July 15th, 00:55 CEST, 51° 12’ N, 13° 35’ E, 189 m above sea level (Meißen, Saxonia):

1b) Jens Hackmann: July 15th, 00:55 CEST, 49° 29’ N, 9° 55’ E, 333 m above sea level (Weikersheim, Baden-Württemberg):

2a) Franz Peter Pauzenberger: July 15th, 02:02 CEST, 49° 00’ N, 11° 30’ E, 518 m above sea level (Beilngries, Bavaria):

2b) Alexander Haußmann: July 15th, 02:01 CEST, 51° 32’ N, 13° 58’ E, 110 m above sea level (Senftenberg, Brandenburg):

For a detailed analysis, it is necessary to calibrate these photos, which means to precisely assign values for azimuth and elevation to each pixel. If the projection characteristics of the photographic lens are known, the positions of two stars in each picture are sufficient input for this purpose. However, the simple assumption of an ideal gnomonic (rectilinear) or equal-area projection (for ordinary and fisheye lenses, respectively) drastically limits the accuracy of the results. To overcome this, the projection characteristics for all four lenses were reconstructed by measuring the pixel distances of approximately 15 stars from the image center and compare these with the angular distance from the optical axis for each image.

After this calibration and assignment, longitude and latitude positions for each pixel can be calculated, allowing the projection of the photo onto a map if a certain height of the airglow layer is assumed. This method already proved to be very useful for the reconstruction of NLC positions ( Since the goal is here to determine the layer height, this parameter is varied until the corresponding structures in both reconstructions of an image pair give the best fit. Indeed it was possible to find consistent height values for both data sets, 92 km for pair 1 ( and 93 km for pair 2 ( Here the traditional blink comparison technique was applied in a modern form using gif animations. It is fascinating to see how the airglow structures that look completely different in the original two photos of each pair coincide in the reconstruction on the map. Evidently, all non-airglow structures such as trees, background light, clouds, photographic violet aurora etc. have to be ignored in the reconstruction. It should be noted that more complex approaches ( are recently established in the professional field, allowing even to resolve finer structures within the thickness of the airglow layer.

Furthermore, these reconstructions show an undistorted view on the band structure of the green airglow layer. As already expected from the perspective view of the original photos, these bands are roughly aligned in the direction from West to East. Using the consistent height information obtained from the image pair comparisons, it is moreover justified to project a whole picture series from a single observation site onto the map in order gain insight in the airglow band dynamics. For this purpose I used a time lapse series that I took from July 14th, 23.16 CEST to July 15th,  01.20 MESZ at the Senftenberger See (51° 29’ N, 14° 01’ E), starting in the evening dawn and originally intended to capture the predicted aurora borealis ( Due to the weak contrast of the airglow at this stage, strong image processing is needed to separate the bands from the background. Though this finally results in a rather poor signal to noise ratio, it can clearly be seen that the airglow bands move in northward direction (, illustrating the recombination and/or matter transport dynamics in the mesopause region.

Author: Alexander Haussmann